import torch import torch.nn.functional as F from torch.autograd import Variable import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image from torchvision import transforms class GradCam: def __init__(self, model): self.model = model.eval() self.feature = None self.gradient = None self.adaptiveavgpool_features = [] def save_gradient(self, grad): self.gradient = grad def save_adaptiveavgpool_features(self, feature): self.adaptiveavgpool_features.append(feature) def __call__(self, x, interested_class): image_size = (x.size(-1), x.size(-2)) datas = Variable(x) heat_maps = [] for i in range(datas.size(0)): img = datas[i].data.cpu().numpy() img = img - np.min(img) if np.max(img) != 0: img = img / np.max(img) feature = datas[i].unsqueeze(0) for name, module in self.model.named_children(): if name == 'classifier': feature = feature.view(feature.size(0), -1) feature = module(feature) if name == 'features': feature.register_hook(self.save_gradient) self.feature = feature elif name == 'avgpool': self.save_adaptiveavgpool_features(feature) # 第12层平均池化 classes = F.softmax(feature) predicted_class = interested_class one_hot = torch.zeros_like(classes) one_hot[:, predicted_class] = 1 self.model.zero_grad() classes.backward(gradient=one_hot, retain_graph=True) weight = self.gradient.mean(dim=-1, keepdim=True).mean(dim=-2, keepdim=True) mask = F.relu((weight * self.feature).sum(dim=1)).squeeze(0) mask = cv2.resize(mask.data.cpu().numpy(), image_size) mask = mask - np.min(mask) if np.max(mask) != 0: mask = mask / np.max(mask) heat_map = np.float32(cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)) cam = heat_map + np.float32((np.uint8(img.transpose((1, 2, 0)) * 255))) cam = cam - np.min(cam) if np.max(cam) != 0: cam = cam / np.max(cam) heat_maps.append(transforms.ToTensor()(cv2.cvtColor(np.uint8(255 * cam), cv2.COLOR_BGR2RGB))) heat_maps = torch.stack(heat_maps) return heat_maps, self.adaptiveavgpool_features IMAGE_NAME = 'C:\GAP\计算机视觉实验\实验四\实验四模型和测试图片(PyTorch)\data4\\both.jpg' SAVE_NAME = 'grad_cam_both_1_avgpool.png' test_image = (transforms.ToTensor()(Image.open(IMAGE_NAME))).unsqueeze(dim=0) model = torch.load('torch_alex.pth') grad_cam = GradCam(model) interested_class = 1 # 选择特定类别 feature_image = grad_cam(test_image, interested_class)[0].squeeze(dim=0) feature_image = transforms.ToPILImage()(feature_image) feature_image.save(SAVE_NAME) FEATURE_SAVE_NAME = 'grad_cam_both_feature_avgpool.png' heat_map, adaptiveavgpool_features = grad_cam(test_image, interested_class) fig, axs = plt.subplots(16, 16, figsize=(16, 16)) count = 0 for i in range(16): for j in range(16): feature_map = adaptiveavgpool_features[0][0][count].detach().cpu().numpy() axs[i, j].imshow(feature_map, cmap='jet') axs[i, j].axis('off') count += 1 if count >= len(adaptiveavgpool_features[0][0]): break plt.tight_layout() plt.savefig(FEATURE_SAVE_NAME, bbox_inches='tight', pad_inches=0) print(len(adaptiveavgpool_features[0][0])) print(model.__dict__) for name, module in model.named_modules(): print(name, module)